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Abstract
Recently, the use of machine-learning (ML) models for pharmacokinetic (PK) 
modeling has grown significantly. Although most of the current approaches use 
ML techniques as black boxes, there are only a few that have proposed interpret-
able architectures which integrate mechanistic knowledge. In this work, we use 
as the test case a one-compartment PK model using a scientific machine learning 
(SciML) framework and consider learning an unknown absorption using neural 
networks, while simultaneously estimating other parameters of drug distribution 
and elimination. We generate simulated data with different sampling strategies 
to show that our model can accurately predict concentrations in extrapolation 
tasks, including new dosing regimens with different sparsity levels, and produce 
reliable forecasts even for new patients. By using a scenario of fitting PK data with 
complex absorption, we demonstrate that including known physiological struc-
ture into an SciML model allows us to obtain highly accurate predictions while 
preserving the interpretability of classical compartmental models.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Frameworks that combine mechanistic and machine learning tools (scientific 
ML [SciML] approaches) have shown promising results in pharmacokinetic (PK) 
modeling. Methods that allow to capture and parametrize known and unknown 
mechanisms have not been explored widely.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can PK models be enhanced by adding neural network terms to capture un-
known mechanisms? Can these frameworks make accurate PK predictions and 
how does its performance compared to other SciML approaches?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The proposed PK-SciML model learns an unknown absorption mechanism and 
PK relevant parameters simultaneously. This framework does not require large 
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INTRODUCTION

Machine-learning (ML) applications in clinical pharma-
cology have been rapidly increasing over the last several 
years. Methods in this area have been focused on (but not 
limited to) data imputation,1 covariate patient stratifica-
tion,2–5 and predictive modeling.6–10 Different reviews11,12 
have surveyed the current methods available and de-
scribed considerations for future methods, such as inter-
pretability, generalizability, and reproducibility.

This work focuses on predictive models for pharma-
cokinetics (PKs). Most of the existing neural network 
approaches do not incorporate physiological structure 
into the model,13,14 however, more recently, some works 
have started to do this.6,9 For example, work conducted 
by Qian et al.6 considers a neural network architecture 
which takes into consideration an ordinary differential 
equation (ODE) system of the PK dynamics. The work 
of Janssen et  al.9 considers a physiologically based 
and well-known compartmental model for describing 
PK concentrations and uses a neural network term for 
learning covariate effects, which are incorporated as 
ODE parameters. Combining mechanistic frameworks, 
specifically differential equations, and ML – (called 
scientific machine learning [SciML]),15,16 allows us to 
benefit from the advantages of both methodologies. 
The mechanistic framework allows for the inclusion of 
physiological constraints and domain expertise in a set 
of equations, whereas an ML architecture helps manage 
multimodal (and potentially high dimensional) data, 
unknown mechanisms, and missing values. The use of 
SciML models in other fields of science have yielded 
encouraging results17,18; thus, providing the motivation 
for this work to apply a similar strategy to clinical phar-
macology.15,16,19 We propose an extension of the typical 
pharmacometrics workflow, where an initial compart-
mental model is fitted to a dataset and a trained pharma-
cometrician identifies shortcomings of the model. It is 
in this step that we introduce the PK-SciML framework, 
which builds on an existing compartmental PK model 
and couples it with one or more neural network terms 
to describe unknown mechanisms, such as absorption or 

clearance. In the main text of this paper, we will focus 
on a complex absorption as an unknown mechanism, 
but the principle can be applied to any component of the 
compartmental model.

Our reasons to do this are two-fold. We want to enable 
the estimation of “known-unknowns,” such as clearance, 
or volume of distribution along with a flexible neural net-
work term to enhance interpretability of the results. A 
second motivation is that we hypothesize that by adding 
known physiological structure, less data will be needed 
to train the model compared to a purely data driven ap-
proach and that the typical extrapolation tasks asked from 
a PK model will yield more robust results.

To test these hypotheses, the performance of the pro-
posed method in typical scenarios, that are frequently 
considered for population PK models, is compared against 
two established purely data driven architectures.7,8 The 
first by Lu et al.,7 is based on the neural ODE approach,13 
in which the initial conditions of an ODE system param-
eterized via a neural network are learned via a gated-re-
current unit (GRU) neural network from data. The second 
model, by Bräm et al.,8 is based solely on a recurrent neu-
ral network architecture. These scenarios are important 
for performance assessments because the questions in 
PKs clearly go beyond predictions for samples similar to 
those in the training set: more specifically, relevant tasks 
include extrapolation beyond the time horizon provided 
in the data, prediction of compartmental concentrations 
for new doses, predictions for missing doses, and predic-
tion in case of a complete dosing cessation.

As an initial example, we consider the case of a com-
plex absorption model. Capturing absorption mechanisms 
appropriately is a hurdle even for state-of-the-art param-
eter estimation methods like the nonlinear mixed effects 
(NLME) model.20–22 Different works have highlighted the 
importance and the difficulty of modeling drug absorption 
profiles.20–22 We show that neural networks can be used 
to characterize these absorption profiles. Furthermore, 
we demonstrate that they aid a compartmental model to 
capture the behavior of the absorption mechanism while 
maintaining interpretability and physiological relevance, 
allowing for robust extrapolation.

or dense sampling datasets to accurately perform typical extrapolation tasks faced 
during drug development.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our approach sets the scene for developing understandable and reliable ap-
proaches for many applications in the PK/pharmacometric field. The method has 
many desirable properties and can be used as stepping-stone for further method 
development.
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METHODS

Problem definition

In this paper, we consider the problem of fitting PK data of 
a specific drug that exhibits a potentially atypical absorp-
tion process. We propose a model that learns an unknown 
realistic absorption mechanism using neural networks 
and estimates PK relevant parameters simultaneously. We 
compare this model against state-of-the-art architectures 
recently proposed for similar tasks in several evaluation 
scenarios.

Training data and scenarios

Absorption model

To motivate our modeling framework, we considered the 
absorption to follow a Weibull distribution. This type of 
absorption has been shown to capture the drug intake 
along the gastrointestinal tract and it is typically used 
whenever the absorption process cannot be described 
by zero-th order, first order process, or a combination of 
both.20

The estimated drug absorbed by a Weibull-type absorp-
tion is given by the following time-dependent formula23:

where F is the absolute bioavailability, KA is an absorption 
parameter, � is a shaping factor that modulates the rate of ab-
sorption, and tLastDose denotes the time of the last dose event.

In silico patient data

For simulating in silico patient data, we considered an 
NLME with a common system of ODEs as the structural 
model:

where Depot and Centr denote the depot and central com-
partment, respectively, CL is the apparent clearance, V  is 
the apparent volume of distribution of the central com-
partment, and the drug exhibits a Weibull-type absorption 
process. Zero initial conditions were considered.

We assumed clearance exhibits interindividual vari-
ability, which we modeled by considering that the individ-
ual clearance for subject i is given by CLi = CLpope

�iwhere 

�i ∼
(
0, �IIV

)
. In this formula, CLpop is the population 

apparent clearance, �IIV is the expected log-normal vari-
ability, and �i is the individual random effect that we as-
sume to follow a normal distribution with expectation 0 
and standard deviation �IIV.

Let cij denote the observed concentrations for subject i 
and observation time tj. We considered two situations:

Situation 1: drug concentration measurements exhibit-
ing an additive error:

cij =
Centrij

Vi
+ �ij, where �ij ∼

(
0, �Add

)
,

Situation 2: drug concentration measurements exhibit-
ing a proportional error:

cij =
Centrij

Vi

(
1 + �ij

)
, where �ij ∼

(
0, �Prop

)
.

The parameters of the NLME model are in Table S1.
If a concentration measurement after including the 

error term is negative, that measurement is recorded as 
zero. This rarely happens given the small values of �Add 
and �Prop (see Table S1).

To ensure a better comparison with current state-of-the-
art models,7,8 the data used in this paper resemble the set-
tings (number of patients and dose range), in which these 
particular models were trained. In consequence, the in silico 
patient data consisted of 800 patients that were randomly 
allocated into eight dose groups: 80 (once weekly), 100, 120, 
140, 160, 180, 200, and 220 mg q.w. Weekly subcutaneous 
dosing was assumed. The PK data from these patients was 
assumed to be described by the NLME given by Equation 2. 
It was simulated for 70 days and recorded every 12 h.

We considered two different PK sampling scenarios: 
a very intensive sampling scenario that ensures proof-of-
concept for different data-intensive ML algorithms, and a 
sparser, more realistic sampling strategy, representative of 
a dose escalation-expansion study.24

Sampling 1 (highly intensive sampling): Same sam-
pling for all patients. Concentrations available every 12 h 
for 42 days.

Sampling 2 (less intensive sampling): Same sampling 
for all patients, only seven available measurements per 
cycle in three cycles (only after the first, third, and fifth 
dose administrations) at 0, 12, 24, 48, 72, 96, and 144 h 
after the dose was administered.

Test scenarios

To demonstrate the performance of the different meth-
ods, we generated different prediction scenarios which 
allowed us to evaluate the models' capabilities for several 
practically relevant questions. Two general schemes were 

(1)KWeibull(t) = F
(
1 − e−(KA(t−tLastDose))

�
)

(2)

dDepot

dt
= −KWeibull(t) ⋅Depot,

dCentr

dt
= KWeibull(t) ⋅Depot−

CL

V
Centr,
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considered: (1) prediction of a new patients set consist-
ing of 120 new patients that have not been seen by the 
models and (2) prediction on the same patients set that 
was used for training. In both sets, the time horizon was 
set to 70 days. The first 42 days used the specific training 
sampling. Thereafter we used sampling 1 (every 12 h) for 
prediction and visualization. For each set, the scenarios 
were defined as follows:

Extrapolation: No change was made in the dosage 
amount nor dosing schedule; doses were administered 
according to the same dosing schedule as in the training 
data.

No dose after: We stopped dosing after day 42. It meant 
that when using the same patient set, only one additional 
dose was given to the patient (at day 42) beyond those in 
the training set.

Dose missing: We assumed no dosed on the 49th 
day. After that, dosing according to the initial regimen 
proceeds.

New dosage amount: We changed the dosage amount 
for all the patients. Specifically, we tested using two new 
doses that were not used in the training data. The first one 
was in the range of the simulated data (i.e., 150 mg), and 
the second one was higher than the maximum dose used 
during training (i.e., 230 mg). No dose interruptions were 
considered in this scenario.

To verify the impact of sample size, we trained all mod-
els with a different number of patients, where the lowest 
number represents the most realistic scenario. When using 
the same patient set (except for the new dosages amount), 
we measured the performance after the training time span 
and for the case of a completely new patient sample, the 
metric was calculated over the complete time horizon. 
Specifically, as evaluation metrics, we reported the mean 
absolute percentage error (MAPE)25 and the root squared 
mean prediction error (RSME)26 for all tested scenarios:

where n is the number of patients, and yi and xi are the ob-
served/simulated and predicted values.

Pharmacokinetic-scientific 
machine learning

In our proposed PK-SciML architecture, we used a stand-
ard ODE system to describe the drug dynamics in a depot 
and a central compartment. This scheme allows us to 

capture the known physiology, such as apparent clearance 
and apparent volume, in the architecture itself which en-
sured that certain physiological principles were preserved.

Our goal is to learn the absorption mechanism (�), 
the CL, and V (i.e., the parameters which define the ODE 
system). Hence, given a dose regimen, we can predict the 
concentration in the central compartment along the com-
plete time horizon.

Further physiology that was embedded in the architec-
ture revolves around initial conditions and dosing. For the 
dosing, we followed a similar approach to the one taken by 
Lu et al.,7 wherein each time a dose is administered to the 
patient, the dosage is added to a compartment. Besides, 
we followed the approach adopted by a different work of 
Lu19 wherein the initial conditions of the ODE are phys-
iologically fixed to zero which enables the prediction of 
“new” patients and scenarios that have no data available 
as is often needed in applications.

A neural network �� was trained to predict the un-
known absorption rate � based on the data of the Depot 
compartment and the difference in time since the last 
dose was given to the patient (tsld). CL and V were learned 
as parameters in each backpropagation step. We imple-
mented a potentially weighted mean squared error (MSE) 
as loss function to estimate the optimal values. However, 
to allow the model to focus on learning the differences in 
the concentration values for each timepoint, we added the 
MSE along the temporal axis and then averaged over the 
batch size as follows:

where n is the number of patients, t is the number of time 
steps, yi,j and xi,j(� , CL,V ) are the real and predicted con-
centrations of patient I at time step j, respectively, wi,j are 
weights that can be chosen appropriately (i.e., 1 for normal 
MSE), corresponding to an additive error component, or yi,j 
to account for a proportional error model commonly used in 
PK modeling.

Additionally, to get the predicted concentration 
xi,j(� , CL,V ) we divided the second dimension of the out-
put of the ODE system by the predicted volume. Figure 1 
shows an overview of our framework.

(3)MAPE =
100%

n

∑n

i=1

|
||
|

yi − xi
yi

||||

RMSE =

�
∑n

i=1

�
yi−xi

�2

n

(4)
dDepot

dt
= − � ⋅Depot

dCentr

dt
= � ⋅Depot −

CL

V
Centr

Depot(t = 0) = 0; Centr(t = 0) = 0

(5)L(x) =
∑n

i=n

∑t

j=1

(
yi,j−xi,j

)2

wi,j
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Model details

The neural network within our proposed PK-SciML 
consists of two fully connected layers with a tanh acti-
vation function in between and a SoftPlus27 activation 
function at the end to avoid negative values. The first 
layer takes the concatenation of the Depot compartment 
information and the tsld as input and has 75 hidden 
neurons as output. The second layer contains a single 
output which represents the absorption rate. Although 
the weights � of the neural network were initialized ran-
domly, the CL and the V were initialized as 2.0 and 10.0, 
respectively. The model was trained with a batch size of 
100 during 250 epochs using the Adaptive moment es-
timation (ADAM) optimizer28 and a fixed learning rate 
of 0.01. Given the limited feasibility of performing a hy-
perparameter optimization for the Lu model7 because of 
the long training time that is required, and to perform 
a fair comparison between the models, no hyperparam-
eter optimization was run in this project for any model. 
Model implementation can be found in the Model Code 
of the Data S1.

Model comparison

We compared our approach against two state-of-the-art 
models for PK prediction, which are built based on neu-
ral ODE strategies7 and integration of neural networks 
architectures.8

Lu et al.7 proposed a framework which uses a GRU en-
coder to learn the initial conditions of a neural ODE sys-
tem using the information about the dose cycle, dosage 
amount, PK information of the first cycle, time, and the 

time since the last dose. With the codified initial condi-
tions, and the dosage amount sequence, an ODE solver 
was used to get the hidden state of the system which was 
then projected into the concentration using a decoder 
network. We followed the original implementation of Lu 
et al.7 and trained the model using the RSME loss func-
tion (Equation 3), as well as the batch size and networks' 
hyperparameters as proposed by the authors. Unlike the 
original version, we increased the number of epochs from 
30 to 100, to allow the model to better fit the training data. 
Without this increase, the model was found to predict un-
derfitted concentrations during training. We used this ap-
proach in all the tables and figures as Lu et al.7

Bräm et  al.8 proposed a two-network architecture 
(i.e., dose-network and curve-network). The former 
consists of two branches which use information of con-
centration in the first cycle and the dosage amount se-
quence. Each branch has two long short-term memory 
(LSTM) units and a dense layer to get a representation 
which is then concatenated and projected to a 1 output 
using some dense layers. The curve-network also imple-
ments two LSTM units and two fully connected layers 
to get the representation from the complete concentra-
tion sequence. At the end, the outputs of both networks 
are added and used as the predicted concentration. We 
implemented the Bräm et al.8 architecture in PyTorch29 
for a direct comparison between models. As proposed by 
the authors, the model was trained to predict the con-
centration of the next step. In that sense, the output of 
the network was concatenated to the concentration se-
quence until we could predict the complete trajectory. 
Different from the original implementation, we did not 
pre-train the dose-network using different learning rates 
and number of epochs. Instead, we directly trained the 
complete model in an end-to-end manner. Following the 
original implementation, the model was optimized using 
the MSE loss function and ADAM optimizer. Consistent 
with the Lu approach, we trained the model for 100 ep-
ochs and refer to this model in all tables and figures as 
Bräm et al.8

To go a step further, we developed a third model which 
does not need to use the PK information of the first cycle, 
as required by Lu et al.7 and Bräm et al.8 This modifica-
tion was made to allow for predictions for new patients, 
because many practical applications of PK models require 
predictions for new patients and scenarios where first 
cycle information does not exist. More specifically, we re-
moved: (1) the branch of the dose-network that uses the 
PK information and therefore the concatenation operation 
of the original version, and (2) the dense layer after the 
concatenation of the two branches of the dose-network. 
We train this model for 100 epochs using the same loss 
and optimizer as in Bräm et al.8 In all tables and figures, 

F I G U R E  1  PK-SciML overview. We use a neural network 
to predict the absorption rate while at the same time we learn 
the clearance and the volume as individual parameters in each 
backward pass. PK-SciML, pharmacokinetic-scientific machine 
learning.
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this adapted architecture is referred to as Bräm w/o 1st 
PKC which is short for “PK Cycle information.”

RESULTS

PK-SciML extrapolates well

Figure 2 shows the mean drug concentration-time profiles, 
goodness-of-fit, and residual error plots of the extrapola-
tion scenario using an additive error and dense sampling 
(n = 680 patients). All compared models accurately predicted 
the mean concentration for each of the eight different dose 

groups during both training and extrapolation (Figure 2, left 
column). This finding is supported by the evaluation metrics 
(Table  1, Table  S2), the goodness-of-fit and residual plots 
(middle and right column, respectively) where a close associ-
ation between simulated and predicted values can be appreci-
ated. Importantly, the residual plot illustrates a small drop in 
the prediction performance of the Lu et al.7 approach (t > 50), 
which is reflected by a mismatch in the last two cycles in the 
left plot. This suggests that this model will exhibit a decrease 
in performance for a long extrapolation task. This is likely a 
consequence of encoding the knowledge of the data into the 
initial conditions of the neural ODE, which then leads to a 
decay in their influence on the state of the system over time.

F I G U R E  2  Extrapolation results when training the models using 680 patients on the additive error dataset with sparsity 1. (a) Lu, (b) 
Bräm, (c) Bräm w/o 1st PKC, (d) PK-SciML (ours). For each row we show from left to right the extrapolation results, the goodness-of-fit and 
the residual error plots. Bräm w/o 1st PKC, PK Cycle information; PK-SciML, pharmacokinetic-scientific machine learning, OBS, observed; 
PRED, predicted.
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The results for a more realistic scenario (i.e., a dataset 
generated with a proportional error for 48 patients and 
less intensive sampling), are depicted in Figure 3. In con-
trast to our proposed approach, the models by Lu et al.7 
and Bräm et al.8 cannot fit the training set with a small 
sample size. Specifically, the Bräm w/o 1st PKC architec-
ture predicts similar concentrations for all doses close to 
the average of the first cycle concentration for all patients 
in the training set. This behavior confirms the importance 
of using data of the first PK cycle for this model, but also 
highlights the limited practical applicability. When assess-
ing the ability to extrapolate using a different sampling 
rate, as opposed to our proposed method, the other models 
cannot adapt to the new scheme.

Our proposed model generates accurate predictions 
even when using few patients and extrapolates well to a dif-
ferent sampling scheme (Figure 3, left column). This inter-
pretation is also supported by the goodness-of-fit and the 
prediction residual plots, which also indicate no substan-
tial loss of prediction accuracy with longer extrapolation.

The findings for the no dose after and dose missing 
scenarios, as well as additional experiments with interme-
diate numbers of patients and sampling densities, are con-
sistent with these findings (Figures S1 and S2). Although 
prediction errors for all models increase when the data are 
less abundant, our proposed architecture increases at a 
much slower rate compared to the other approaches and 
maintains a favorable performance across all tasks.

PK-SciML makes accurate predictions for 
new patients

Apart from our method, only the Bräm w/o 1st PKC ap-
proach8 can be used in a predictive setting for entirely new 

patients. Like the extrapolation scenario, both models dem-
onstrate an accurate prediction performance when using 
dense sampling for 680 patients (Figure 4, Table 2). How-
ever, in the more realistic less dense sampling situation with 
48 patients, predictions by the Bräm w/o 1st PKC method8 
do not fit the data well, whereas our proposed approach 
was still accurate. As before, prediction errors generally de-
crease with the increasing number of patients (Table S2).

PK-SciML can predict concentrations 
for novel dosing regimens

Figure 5 presents the results for the three realistic scenar-
ios, in which a novel dosing regimen is predicted. Models 
were trained with 48 patients and tested on the same set of 
patients at t greater than 49, akin to the extrapolation case. 
Although this task would also usually be in new patients, 
to allow for a better comparison, we have restricted it to 
those situations where all algorithms will produce a pre-
diction. For the Bräm w/o 1st PKC model8 we again observe 
a lack of fit to the training data and a high prediction error.

For the no dose scenario, the Lu et al.7 predictions fol-
low the expected behavior, whereas the Bräm et al.8 ap-
proach predicts a steady-state at the last predicted value 
(Figure 5, left column).

In the dose missing scenario, where a dose is missing at 
t = 49, Lu et al.7 and Bräm et al.8 architectures under pre-
dict values at the time the dose is removed. As a result, the 
predicted concentration ranges for t greater than or equal 
to 56 are dissimilar to the real ones at times when patients 
are re-dosed. The predicted concentrations for the Lu et al.7 
approach are close to zero.

In contrast, our proposed SciML approach in all tested 
scenarios predicts the concentration with high accuracy. 

T A B L E  1  Average MAPE for two different training scenarios on the same patients set.

Model

Additive error dataset - Sparsity 1 Proportional error dataset - Sparsity 2

Training 
patients Extrapolation

No dose 
after

Dose 
missing

New 
dose 
(150 mg)

New 
dose 
(230 mg)

Training 
patients Extrapolation

No dose 
after

Dose 
missing

New 
dose 
(150 mg)

New 
dose 
(230 mg)

Lu 680 7.8 133.0 23.3 7.5 6.1 680 16.1 22.3 17.0 13.8 14.0

48 29.9 67.1 34.2 27.3 22.4 48 50.1 38.7 48.3 50.1 43.3

Bräm 680 3.1 113.7 6.1 3.0 2.6 680 62.7 50.5 59.0 61.2 61.2

48 9.5 196.3 18.3 9.1 9.2 48 49.6 107.7 36.3 17.6 23.3

Bräm w/o 
1st 
PKC

680 3.9 175.3 18.1 3.8 4.7 680 54.9 62.6 47.4 66.3 68.0

48 29.2 347.4 50.3 15.0 42.4 48 32.2 366.9 61.2 14.8 36.2

PK-SciML 680 3.8 15.9 4.9 3.4 3.3 680 8.8 11.5 9.2 8.7 8.7

48 3.9 17.3 5.3 3.4 3.2 48 9.2 13.8 9.9 8.9 9.0

Note: In bold, we show the best performance for each scenario. Metrics are reported after the training time.
Abbreviations: Bräm w/o 1st PKC, PK Cycle information; MAPE, mean absolute percentage error; PK-SciML, pharmacokinetic-scientific machine learning.
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Thus, our model captures the mechanistic relationship 
between the dose and the concentration in the central 
compartment and can adapt the output to the dynamics 
of situations different to the one presented in the train-
ing set. The evaluation metrics for all tested scenarios are 
shown in Table S2.

To further support this point, the right column of 
Figure 5 shows the results when changing the dosage to a 
value that exceeds the maximum dose in the training data. 
Here, the Bräm et al.8 as well as Lu et al.7 architectures 
underestimate the concentration, whereas our PK-SciML 
approach accurately predicts concentrations that are close 
to real ones. Further supporting these findings, the point 

estimates of the apparent CL and apparent V made by our 
model are close to their original values used for generating 
the data (Table S1).

Influence of loss function on PK-SciML 
predictions

To investigate the real-world influence of increasing non-
normal noise, we simulated an increasing amount of pro-
portional error in the data and compare PK-SciML trained 
with the usual MSE versus a version trained with a pro-
portional error loss (Equation 5). As expected, prediction 

F I G U R E  3  Extrapolation results when training the models using 48 patients on the proportional error dataset with the sparsity 2. (a) 
Lu, (b) Bräm, (c) Bräm w/o 1st PKC, (d) PK-SciML (ours). For each row we show from left to right the extrapolation results, the goodness-
of-fit and the residual error plots. Bräm w/o 1st PKC, PK Cycle information; PK-SciML, pharmacokinetic-scientific machine learning, OBS, 
observed; PRED, predicted.
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errors of the PK-SciML with proportional error loss were 
consistently lower than for the PK-SciML trained with 
the MSE as loss function, if the simulated amount of pro-
portional error increases (Table S3). This shows that the 
structural model and loss function can be informed by 
principles known from PK modeling to benefit the reli-
ability of the predictions.

DISCUSSION

Considering as a use case PK data with a complex ab-
sorption process, this work shows that incorporation of 

known PK mechanisms into ML models improve their 
performance. Our PK-SciML model was able to capture an 
unknown absorption mechanism, reflected by the highly 
accurate PK predictions, even when considering a realistic 
less intensive sampling scheme where the other models 
performed poorly. Moreover, the PK-SciML model allows 
the estimation of PK relevant parameters (i.e., apparent 
volume and apparent clearance), therefore allowing the 
interpretability of these values. This framework could be 
adapted in an ad hoc problem basis to learn an unknown 
mechanism present in the PK dynamics. To further exem-
plify this, in the Data S1, we show an example in which 
we adapted our architecture to capture an unknown and 

F I G U R E  4  Prediction results on 96 new patients when (a), (b) training the models using 680 patients and sparsity 1, and (c, d) training 
the models using 48 patients and sparsity 2. (a, c) Bräm w/o 1st PKC, (b, d) PK-SciML (ours). For each row we illustrate from left to right the 
extrapolation results, the goodness-of-fit and the residual error plots. In the former, we keep the same training sparsity rate until t = 42 (i.e. 
training time). Bräm w/o 1st PKC, PK Cycle information; PK-SciML, pharmacokinetic-scientific machine learning, OBS, observed; PRED, 
predicted.
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time-variant clearance while estimating simultaneously 
a linear absorption rate and volume (Figure S3). We ob-
served a good fit and note that for different applications, 
the hyperparameters of our model should be chosen 
appropriately.

Another important observation is that without loss 
of performance, our proposed architecture also allows 
us to deal with one of the most relevant scenarios in PK 
modeling, namely predictions for new situations and 
patients with no available concentration data. Other 
prediction models7,8 must be initialized with at least the 
concentration values of the drug during the first cycle 
we want to test, which is unavailable for new patients. 
In addition, our model is sufficiently robust such that: 
(1) it removes the difficulty of testing new doses, which 
is not possible for the other evaluated models because 
they must be initialized for a new dose group, even if 
the same patients are used, (2) it adapts to different ex-
trapolation samples, and (3) it captures the effect that 
the dose has on the concentration, allowing for highly 
accurate predictions of dosing regimens which differ 
from the ones used in the training data. Last, all re-
sults are obtained without extensive hyperparameter 
optimization.

An important limitation of our model is that it gener-
ates population trajectories without considering the pa-
tients' individual parameters on the drug concentration. 
Addressing this limitation is planned for future work, 
and different methods can be used to consider patient 
specific parameters in a ML framework.30–32 Another 
limitation, is that due to the lack of publicly available 
data, we could only use in silico data in this study. More-
over, the performance comparison must be considered 
with the fact in mind that the PK-SciML framework 
used the known true structure, which enabled the su-
perior performance. However, PK models are always de-
veloped by considering known physiological structure 
and thus we do not see this aspect as a main limitation 
of our study.

Whereas our last test scenario resembles a very large 
phase I study in the number of patients and sampling 
scheme, it remains to be investigated how the performance 
of this method changes in settings with more sparse sam-
pling, such as phase II/III studies or smaller phase I stud-
ies. A possible direction for improvement is uncertainty 
quantification of learned parameters (e.g., via variational 
inference).

We note that because the model has predefined 
structure to capture different PK processes, it is sus-
ceptible to the same problems of misspecification, as 
known for population PK models – with the additional 
benefit of replacing the misspecified part of the model 
with a neural network. This work shows the potential T
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of the development of hybrid models, which are at the 
same time more flexible than traditional models and 
more interpretable than traditional ML models, rely-
ing on an expert human teaming up with the algorithm 
to improve upon what each could have achieved in 
isolation.7,8
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